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ABSTRACT 

 

Visualization of complex data, such as a file system or file, allows a forensic 

analyst or reverse engineer to rapidly locate areas of interest amidst a large quantity of 

data. While visualization provides a promising form of analysis, is the subject of much 

skepticism, as human interaction is required in order for this method to be successful. As 

a result of this, visualization methods face two major obstacles: tediousness and time.  

As our contribution, we propose a unique method of graphing visual information 

into a measurable format suitable for use with machine learning algorithms. This method 

will still utilize the visual layout of the data but streamline this form into one that can be 

rapidly processed by a machine.  

In this work we examine existing methods of file fragment analysis, determine 

how to apply visualization to this analysis, and transform this visual data into a 

measurable format for machine leaning algorithms using our tool called VMIFF 

(Visualization Metrics for the Identification of File Fragments). In its breadth, this work 

aims to demonstrate that such transformations will still yield meaningful results.  
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CHAPTER I.  INTRODUCTION & MOTIVATION 

 

1.1 Introduction 

In 2009, it was estimated that 250 Exabytes (2 x 1021 bits) of data would be 

generated and copied worldwide [29]. In 2010, it was estimated that this figure 

quadruped in size to almost 1000 Exabytes a year [29]. With more of our information 

being stored digitally, criminal investigators have had to refine their skills to adapt to 

new forms of evidence [17]. Not only this, but they must also hone their skills to be able 

to sift through all of this information and identify which files will prove valuable to the 

case. This sorting procedure can take a great deal of time by itself, but if the hard disk or 

file system has become corrupted this process can become even more time consuming if 

not completely impossible [22].  

Corrupted file systems or hard disks transform the previous useful data stored in 

these systems into meaningless binary. It is now up to the investigator to carve the 

relevant information from the file system and reformat it back into its original structure. 

This is by no means an easy task. 

There are many different approaches to recovering files from a disk. Some 

methods focus on how to recover deleted fragments on a file system. Others take more 

of a full file system approach and focus on identification of a whole file, file fragment 

classification, file carving, and/or reassembly of fragments.  

This paper will focus on file fragment classification. Specifically we will look at 

how the visualization of binary file fragments can be useful in classifying them into a 
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specific file type (ex. doc, jpg). We will be utilizing 2D graphs to visualize these file 

fragments before transforming these visual structures into a measureable or metrics 

based form. This constructed data will then be used in conjunction with the Weka data 

mining program to build a model for each fragment type.  

 

1.2 Motivation 

A longitudinal study of households from 1984 to 2009 showed an increase in the 

number of households with a computer at home from 8.2% in 1984 to 61.8% in 2003 

[24]. In 2010 the United States Census Bureau found that of a sample size of 119,545 

households, 91,724 (76.7%) own at least one computer [25]. Not only are computers 

becoming more commonplace but the storage capacity of these devices is also 

increasing. For the average computer, it is becoming more common to find hard drives 

with 2 terabyte drives or more. These drives are becoming readily available to the public 

as the price of these components continues to decline (25). 

More drive space means more data and more data means more time spent 

performing analysis on this data. Knowing this, investigators have had to start getting 

creative in how they approach the analysis of files. Visualization of complex data is an 

often overlooked and underutilized approach to this issue [6]. It is only recently that 

recognition of what visual formats can bring to the analysis has been acknowledged.  

BlackHat presenters Gregory Conti and Sergey Bratus believe that “the 

techniques of breaking down large binary objects into simpler parts will be useful for 
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fuzzing, file carving, reverse engineering, malware analysis, file type identification and 

other forensics and security analysis tasks [4].”  

The downside to existing visualization methods is that these methods require 

some sort of human interaction in order to provide insight about the file being analyzed 

[8]. This can lead to an increase in overhead, or the amount of time it takes to correctly 

classify or identify the key features of a file or file system [22]. While this is still an 

improvement over manually going through a program or file line by line, Conti and 

Bratus acknowledge that for this method to be truly effective, regardless of its purpose, it 

must become automated by the use of classification, clustering or data mining [3]. 

In order to address this issue we propose a method to capturing the essences of 

this visualized data into a measureable form which can then be processed by a machine 

learning algorithm using our VMIFF (Visualization Metrics for the Identification of File 

Fragments). We hope that by utilizing this method we will be able to bridge the gap 

between the visual world and the digital. Our method will help to address the amount of 

time associated with requiring manual human interaction to identify each file fragment 

by automating this process. We hope that our research will help to further improve the 

methods of file fragment identification, particularly in regards to visualization. 

 

1.3 Thesis Overview 

The rest of the paper is as follows. Chapter 2 - Background will provide the 

necessary information on how file systems function and how corruption of these file 

systems can impact the recovery of files. Chapter 3 – Literature Survey will discuss 
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traditional methods for approaching this problem, like file structure based carvers. 

Additionally this section will discuss current research being done with machine learning 

algorithms and in the visualization of complex data. The visualization section will 

address existing methods for viewing complex data. Chapter 5 – VMIFF Design will 

discuss the tool we developed to transform a visual representation of the bytes of a file 

into a format suitable for machine learning algorithms. Chapter 6 – Evaluation and Case 

Study will apply our VMIFF tool to a simulated file system composed of 13 different file 

types and evaluate its results. Chapter 7 – Discussion will address potential criticisms of 

our work. Chapter 8 – Summary and Future Works will provide an overview of this 

work and a discussion of future works.  
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CHAPTER 2.  BACKGROUND 

 

2.1 File System 

In any operating system, the hard disk is divided up into small blocks often 

referred to as clusters [16]. These clusters are of a certain set size and the files are saved 

over top of these clusters. For instance if each cluster size is two kilobytes and the file to 

be saved is eight kilobytes in size, then the file will end up occupying four clusters. 

A brand new hard drive begins essentially as a blank slate of empty clusters. 

There are no files or data written to the drive. As a user or process writes information to 

the hard disk these clusters become filled with whatever information the file contains. 

Figure 2.1 details what a file system might look like. In Figure 2.1 the files “A”, 

“B”, “C”, and “D” are all neatly organized in the first five clusters of the file system. 

Notice how file “D” spans two clusters instead of just one. 

 

 

Figure 2.1 – A hard disk with two empty clusters. 

 

When the files are actually saved onto a cluster, the file system needs to know 

where these files will be located. This will allow the file system to quickly access these 

files for the user at a later date. For the purpose providing a general overview on how 

file systems work, we will focus on how the Windows operating systems manages the 

file system using a FAT architecture. (Please note there are other types of file systems 
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and that our tool, VMIFF, works with the bytes of file or fragment so the original file 

system is not considered.) 

For the Windows FAT file system, it uses what is called a file allocation table 

(FAT) to list the clusters occupied by a file [16]. There are generally five ways each 

cluster is labeled: free (empty), reserved, bad (corrupted), last cluster or next cluster 

[16]. 

 

 

Figure 2.2 – The FAT table for the file system in Figure 2.1 

 

According the file system in Figure 2.1, the FAT would look like Figure 2.2. 

From Figure 2.2, cluster 3 would be marked as reserved for file “C” whereas cluster 6 

would be marked a free as no file has been saved here yet. If we examine file “D” from 

Figure 2.1 we can see how the FAT directs the file system on how to find larger, multi-

cluster files. In the FAT in Figure 2.2, cluster 4 would be marked as reserved and contain 

a pointer to direct the file system to cluster 5 [16]. This tells the file system where the 

rest of the file is located. The file system would jump to cluster 5 and continue reading 



www.manaraa.com

7 

 

the file. At the end of cluster 5 there would be a marker that would tell the file system it 

had reached the end of the file “D” [16]. 

There are four issues which impact file systems that increases the difficulty 

investigators face in analyzing them. These four issues are disk fragmentation, file 

fragmentation, FAT corruption and file deletion. Disk and file fragmentation prohibit 

investigators from simply reassembling unknown or corrupted files by reading a file 

system from its first cluster to its last cluster, sequentially. FAT corruption can hinder 

the recovery of files from a file system because without a FAT to guide the file system 

on what information is stored where, the information on a disk is nothing more than ones 

and zeros. File deletion effects investigators in a similar way as FAT corruption does; 

the data persists on the disk but is no longer retrievable by the file system. 

This is similar to removing the table of contents from a book. While all the pages 

and information are still inside the book, without the table of contents it is difficult to be 

able to locate any of the chapters. The only way to find a chapter would be to manually 

flip through each of the pages until you locate it.  

 

2.2 Disk Fragmentation 

The computer system has the difficult job of attempting to organize files in the 

most efficient manner possible. The goal of the computer system revolves around how to 

fully utilize the disk space the system has available[15]. This goal of efficiency is 

impeded by the fact that the user constantly modifies, deletes and creates new files. This 

creates a disk that is essentially riddled with holes of empty clusters where previous files 
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used to be [16]. 

Figure 2.3 shows a disk suffering from disk fragmentation. The operating system 

has had to move, delete and/or modify files many times resulting in this fragmentation. 

While file “A” has stayed in its original location, all of the other files have been moved 

around on the hard disk. There is no longer a set of empty clusters located at the end of 

the file system. Instead of these empty clusters being located at the end of the hard disk, 

they are now spread about the drive. 

 

 

Figure 2.3 – A fragmented disk. 

 

Once a disk has begun to show signs of disk fragmentation, the amount of disk 

fragmentation present on a hard disk will only increase. This is due to the fact that the 

file system can no longer sequentially add, delete or modify files onto the empty 

clusters. 

 

2.3 File Fragmentation 

Now that we understand the location of files are stored in the FAT and how 

clusters work to store a file’s content, we will now look at how saving a larger file to an 

already fragmented disk will end up creating file fragmentation. 

For example, Figure 2.4 (a) is a two cluster long file called “E” which we want to 

add to the fragmented disk in Figure 2.4 (b). Note that this fragmented system, does not 
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have two empty clusters next to each other. Therefore the file system must split up file 

“E” into two separate one cluster sized pieces. The file system then stores the first part of 

file “E” into the empty cluster 2 and the second part of “E” into the empty cluster 6. This 

results in the file fragmentation of “E” in Figure 2.4 (c). 

 

 

(a) File “E” is 2 clusters in size. 

 

(b) Fragmented disk where “E” is to be added. 

 

(c) The resulting file fragmentation of “E” 

Figure 2.4 – A fragmented disk which upon adding file “E” demonstrates file 

fragmentation. 

  

The example from Figure 2.4 only has a file system size of seven clusters. As 

you can imagine, real file systems are composed of billions of clusters filled with 

millions of files. Therefore from this small example you can begin to see the 

implications of how file systems can easily become susceptible to disk and file 

fragmentation. 
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2.4 FAT Corruption and File Deletion 

If the FAT becomes corrupted or a file is deleted, the original file data still 

persists on the hard disk but it can no longer be easily retrieved by the file system. 

When a file is deleted the file system simply marks the clusters currently 

occupied by this file as being empty and available for new files to be written to in the 

FAT [16]. Even though these clusters are still technically filled with the information of 

these now deleted files, the file system has removed the entrees from the FAT so the file 

system no longer has the pointers to where this file used to be located at. In either of 

these two situations the file system is now no longer able to locate these file, even 

though the data of the file is still located on the hard drive, because all mention of which 

clusters contain the relevant file/s have been removed.  
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CHAPTER 3.  OUR OBJECTIVE 

 

3.1 Problem Definition 

Recovering a file that has been fragmented presents a problem to investigators 

due to the fact that files are identified by most file carvers by using the file’s signature. 

When viewing a fragmented file only the first piece of that file will contain the file’s 

header and only the last piece of a file will contain the file’s footer. File systems are only 

able to understand the order of the middle pieces of a file and to which file these 

fragments belong due to the pointers located in the FAT. These pointers allow the file 

system to reassemble the file when a user or process requests it. However when a file is 

deleted or the FAT becomes corrupted, all record of where the individual middle pieces 

of that file are located have been removed. 

For our work, we assume the worst case scenario where there is no structure or 

file signatures to base our file recovery efforts upon. We intentionally ignore both the 

header and footer fragments in order to focus our file type identification to satisfy this 

situation. Therefore all we have available for analysis are the raw bytes of the file 

fragments with the first and last cluster removed.   

Given these bytes, we assume the smallest possible byte size of 512 bytes. The 

sector size of 512 bytes was selected as cluster sizes are traditionally in multiples of 512 

bytes [19]. Thus by setting our fragment size at 512 bytes we have addressed the 

smallest available fragment size on most systems. We also assume that these files have 
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been fragmented and are no longer in the sequential order necessary for traditional 

recovery.  

This situation will help to ensure that we are focusing our identification efforts 

on only mid-fragments, the most difficult to detect as they contain no information 

linking them back to either the type or the original file. 

Traditionally there are three different types of file carving problems. The first 

problem is: given a set of fragments identify the file type of these fragments. The second 

problem is: given one file whose fragments are out of order, determine the correct order 

of the fragments to reassemble the file. The last file carving problem is: given a set of 

fragments of multiple types and non-sequential order, determine both the type of file and 

the correct order for reassembly. 

For our research we will be focusing on the first problem: identification of file 

fragment types. The other two problems will be discussed in Chapter 8. We selected the 

first file carving problem as a means to illustrate a positive correlation between the 

visualization of data and our VMIFF tool’s ability to correctly capture this. 

 

3.2 Evaluation Metrics 

Two types of metrics were used to evaluate our results. The first metric is 

associated with how we measure and transform our visual data into a measureable form 

via VMIFF which is suited for being processed by a machine. This was measured using 

two variables: features and granularity. Features are the algorithms we used to capture 

how the data looks visually into a measureable format. For example a feature might be 
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the number of points in a specific area of a graph. Granularity refers to the how closely 

we analyzed the data. A low granularity means we are looking at a larger portion (big 

picture) of the graph while a high granularity would correlate to a smaller section of the 

entire graph. 

The second type of metric relates to how well our binning program worked. We 

measure the successfulness of VMIFF with three variables: true positive (TP), false 

positive (FP) and overall run time. These three components will be utilized in both 

Chapter 5 – VMIFF Design and Chapter 6: Evaluation and Test Cases. 
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CHAPTER 4.  LITERATURE SURVEY 

 

4.1 Introduction 

The process of utilizing file carving in order to recover deleted files or those files 

from a corrupted FAT file system can become much more complicated if the deleted file 

has been subject to file fragmentation or if the drive itself has become fragmented. 

Popular file types like AVI, DOC, and JPG, all stand to have significantly higher 

occurrences of fragmentation than other less used file types like BMP, HLP, INF, and 

INI [13]. This is both due to the frequency in which they tend to be modified (doc) and 

that the larger file is the more likely it is to be fragmented [13]. In regards to how this 

might affect forensic investigators these popular highly fragmented file types are some 

of the most commonly examined file types when investigators inspect a hard disk. [13].  

The process of recovering files is currently hindered because the existing 

methods of how tools perform file carving have two main obstacles they have yet to 

overcome. The first obstacle is that a majority of today’s popular carving tools carve out 

files utilizing sequential clusters [13]. This fails to account for the issue of fragmentation 

where empty clusters or other files may exist between the fragments of the desired file. 

This paper will attempt to address this issue. 

The second major obstacle is that tools rarely check the files they have managed 

to recover for the validity of the file itself [13]. Therefore these types of tools end up 

recovering a lot of files that have been corrupted. The problem stems from the fact that 

the tool fails to validate if the file has been successfully reassembled in the correct order 
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with all of the correct fragments. Additionally a lot of file carving tools will present the 

user back with files that are already listed in the FAT, which are uncorrupted and easily 

accessible via the traditional file system. Thus this only presents the forensic investigator 

with more files and more data to sift through without dramatically increasing the number 

of useful files. This issue will be discussed further in Chapter 8. 

There are four general types of carvers that are currently used by the forensics 

community to recover fragmented files. These types are: file structure carvers, 

bifragment gap carvers, statistical and machine learning carvers, and visualization 

carvers. The focus of this paper will be to utilize visualization as well as statistical and 

machine learning carving methods to assist in the identification of file fragments. 

 

4.2 File Structure Based Carvers 

Carvers that work based on the overall structure of the files are the most common 

of the four types. This method utilizes known header and footer information to carve out 

the file [19]. For example a jpeg header will start with the hex sequence of FFD8 and 

will end with a footer hex sequence of FFD9 [19]. Once these two location markers have 

been identified all of the fragments between these two markers would be carved out and 

then reassembled back into the original file type [19]. 

For some file types additional information like file size might also be included in 

the file’s header information [19]. This information could then be used in the validation 

of a file after it has been carved from the file system [19]. However if the fragments of 

the file were out of order, the validation check would pass successfully but the resulting 
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carved file would still be corrupted. 

These carvers can also be adapted to fit file types like ZIP which only have a file 

signature header but no footer [13]. This method works by identifying a header signature 

and then gradually expanding out one block at a time [13]. After each expansion the 

resulting file is then validated to see if it matches the expected overall structure of that 

file type [13]. If not, the file is expanded again and revalidated until a successful 

validation occurs [13]. The main issue that stems from this signature based file carving 

method is that it ignores the fact that the fragments of this file might not be in sequential 

order [19]. 

 

4.3 Bifragment Gap Carvers 

In an attempt to address the issues with the previous type of carver, Simon 

Garfinkel developed the bifragment file carver which assumes that the file exists in two 

fragments with a gap of unknown size between them [13]. This method is similar to a 

guess and test method. It identifies the starting point and ending point of a file via the 

file signatures, aka the header and footer, and then gradually increases the gap between 

these two sections until a valid file can be carved [13]. 

This method also relies heavily on the fast object validation technique developed 

by Simon Garfinkel in order to address the issue of incorrect validation [19]. This 

method works by checking to see if a carved file adheres to expected overall structure or 

rules of that particular file type [19]. What this method fails to account for is the fact that 

file may exist in more than two fragments. 
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4.4 Statistical and Machine Learning Carvers 

These carvers take a different approach to categorizing fragments into their 

appropriate file type than the first two types of carvers. This method looks at the overall 

structure of the file fragment versus being heavily dependent on the header and footer 

signatures [21]. These methods rely on a statistical measurement or features of a file 

fragment to help identify a fragment’s type. For example one feature is known as a byte 

frequency distribution (BFD). This feature looks at the frequency in which each byte 

appears in the fragment and displays this information into a vector [21].  

After collecting a variety of features about a certain file fragment type, the 

information can then be combined into a blueprint of what file fragments of this type 

should look like [21]. Machine learning algorithms work well with this approach. A 

training set will be created to “train” a machine to learn which features should be used to 

identify a fragment as a specific type [21]. Once this model has been build, a test set of 

fragments will be generated to measure the effectiveness of the model at predicting the 

correct file type of new fragments. Typically one feature alone cannot be used to solely 

identify the type of the fragment. Thus features are often used in conjunction with other 

features in order to make a unique profile for each file type [21]. 

 

4.5 Visualization Carvers 

Existing visualization carvers tend to be geared towards the reverse engineering 

(RE) profession. These carvers will provide a visualization for an entire file system or 

file. Typically they also provide additional tools that will serve the RE profession like 
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hex editors, encryption and decryption methods, checksum calculators, and compression 

and decompression components [6]. Additionally many of the more sophisticated tools 

will provide general metrics on the file or file system being analyzed like a byte 

frequency histogram [6]. 

There are three general classes of visualization tools: byte plot, digraph and 3D. 

Byte plot views look at each byte of the file individually, digraph views use two bytes to 

form points on a graph and 3D visualizers use three bytes. 

 

4.5.1 Byte Plot View (1 byte) 

During the 2010 BlackHat conference, Sergey Bratus and Greg Conti gave a 

presentation regarding the visualization carver they had built. Their carver operates by 

reading in each byte of the file or file system and coloring them based on each bytes’ 

numerical value [3]. In the Figure 4.1 below the color white would be represented by the 

byte value of 255 and the color black would be represented by 0, with a scale of grays 

between these two values [3]. The bytes are ordered from left to right as they are read in, 

meaning that position (1, 1) is the first byte and position (1, 2) is the second [3]. 

 

Figure 4.1 – Sergey Bratus and Greg Conti Visualization Carver. 
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This type of carver will read through the entire file or file system and create a 

visual structure of what the file or file system might look like. In Figure 4.2, the jar file 

tools.jar has been completely read in by the carver and mapped into this visual structure 

[3]. 

 

Figure 4.2 – The resulting visualization of a tools.jar file. 

 

In their paper Bratus and Conti discussed how by viewing a file in this manner 

enables the reverse engineer to be able to visually locate areas or sections of interest to 

focus on during their investigation [4]. This would speed up the investigative process 

because the reverse engineer is no longer having to browse through a program line or 

memorize complex patterns of hex. This is all because they can now visually identify 

areas of potential significance and focus their investigation there.  

Bratus and Conti demonstrated that investigators could be trained to identify the 

overall structure of the type of data they were looking for based on sample data [3]. For 
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example if the investigator was looking for code written in C++ he or she would be able 

to identify what C++ code looks like in comparison with other textual types files (see 

Figure 4.3) [3]. 

 

 

Figure 4.3 – Textual file differ based on their content when visualized 

 

4.5.2 Digraph View (2 bytes) 

Another method of visualizing a file discussed by Bratus and Conti was to plot 

pairs of points to into a digraph view [3]. For example, the word “visual” would be 

represented in bytes as {118, 105, 115, 117, 97, 108}. These bytes would then be paired 
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into coordinates to be mapped on to the graph: {(118, 105), (115, 117), (97, 108)}. 

These points would then be plotted on an x and y graph (see Figure 4.4). 

 

Figure 4.4 – A graph of the byte representation of the word “visual” [26] 

 

Bratus and Corti then visualized an entire text file. Figure 4.5 is a representation 

ASCII encoded English text. 

 

 

Figure 4.5 – ASCII English text displayed in digraph view. 
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4.5.3 3D Graph View (3 bytes) 

During the 2012 DerbyCon security conference, Christopher Domas of Battle 

Memorial Institute presented “The Future of RE: Dynamic Binary Visualization” 

detailing a program called cantor.dust [8]. While cantor.dust is again specifically tailored 

towards reverse engineers it offers a number of different ways to look at binary data 

visually. Cantor.dust utilizes both color, bytes and byte patterns in order to help display 

the file, file system, memory dump, or packet visually [2]. In Figure 4.6, two files have 

been transformed into a 3D graph.  

 

 

Figure 4.6. Two 3D graphs of two files [2]. 

 

During Christopher Domas’ talk, he mentions that this type of software is 

designed to illustrate a concept versus marketing the visualization software as a solution 

[8]. Therefore the importance of discovering new ways to visualize data is stressed while 
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the details on how the software actually processes the data was only briefly mentioned 

[8]. Therefore this software is not open-source nor available for public purchase [8].  

As a result of these facts, little more is known about how the data of a file or file 

system is exactly processed other than the fact that their tool uses the fractal pattern 

known as the Hilbert Curve developed by David Hilbert in 1891 (Figure 4.7) to assist in 

the building of the graph [8]. 

 

 

Figure 4.7 – The first six stages of the Hilbert Curve [11]. 
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CHAPTER 5.  VMIFF DESIGN 

 

5.1 Introduction 

In order to transfer our binary fragments into the visual realm, we first had to 

develop a digraph and 3D graph program. Our program is called VMIFF (Visualization 

Metric for the Identification of File Fragments). This program would need to be able to 

accept a variety of different file formats and be able to display them. Next we needed a 

variety of file fragments to perform analysis on. The fragments we selected were mid-

fragments, meaning that these fragments are located between the file signatures as these 

types of fragments are considered the most difficult to detect through the use of 

traditional file structure carvers. Finally we developed a method for transforming the 

visual graphs into a set of numeric values to represent each file type. Using these 

numeric values we utilized a machine learning decision tree to automate the file type 

identification process. Our project will be released as open-source software, VMIFF, on 

github, in order to allow others to expand on our progress. 

 

5.2 Digraphs & 3D Graph Programs 

We utilized a pre-existing java chart library known as JFreeChart developed by 

the Object Refinery Limited Company to help us visualize our binary fragments in a 2D 

digraph [18]. JFreeChart is free, open source software released under a GNU Lesser 

General Public License [18]. This library allows for 2D graphs to be generated and 

displayed by using the existing API calls. Additionally this library also allows for the 
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customization for each chart via the GUI with zooming, color properties and other 

display options easily accessible [18]. We selected a traditional scatterplot for our 2D 

graphs. 

For our 3D graphical representation of the binary file fragments, we elected to 

use the JZY3D open source java library [20]. This library allows for 3D graphs to be 

represented in a variety of different manners, like scatterplots, bar charts, surface charts 

etc. [20].  This program was not as in-depth as JFreeChart but still allowed us to 

represent the binary file fragments on a 3D plane. We also selected a 3D scatterplot view 

to represent our 3D graphs. 

 

5.3 Collection of Fragments 

According to the FileExt database, to date (March 2013) they have currently 

cataloged over 51,537 different file type records [23]. With this many file types available 

we needed to narrow down our search to include only those whose identification would 

most benefit the investigators. We selected 13 different file types to be used in our 

program. These 13 file types were selected both based on their popularity and upon how 

the larger the file is the more likely it is to become fragmented [13]. More specifically 

word document files (.doc), audio video interleave files (.avi), and joint photography 

experts group (.jpg) files were noted to both be of high significance to the forensic 

investigators and also to have a higher likelihood of being fragmented [13]. See Figure 

5.1. 
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Figure 5.1– Analysis of fragmentation in the wild by Simon L. Garfinkel [13]. 

*Note: These files were not included in Garfinkel’s sample file set. However we felt these files to be of 

significance to investigators and will include them in our test sets. 

 

These file types include: Audio Video Interleave files (.avi), Microsoft Word 

Document (.doc), Windows Executable file (.exe), Graphical Interchange Form (.gif), 

Joint Photographic Experts Group (.jpg), Apple QuickTime Movie (.mov), Portable 

Document Format file (.pdf), PowerPoint Presentation (.ppt), Plain Text file (.txt), 

WAVE Audio file (.wav), Windows Media Audio file (.wma), Windows Media Video 

file (.wmv), and Zipped file (.zip) [12].  

Once these types were selected, enough files of each type were obtained to create 

100,000 fragments of 512 bytes of each type. This would ensure we would have enough 
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data to both train and test our machine learning algorithm without biasing it to data it 

had already analyzed.  

These files were obtained from two main sources. The first source was the corpus 

of 1 million files collected specifically for the file fragmentation research [7]. Digital 

Corpora located these documents by selecting a random word from the UNIX dictionary 

and combining them with random numbers for documents of specific file types residing 

on webservers within the .gov domain [7]. These files composed a majority of the files 

used in the training and test sets. 

For those file types which were not included within the above corpus or those file 

types which did not have enough quantity of in order to fragment into the required 

100,000 fragments, a simple Google search was done to locate the missing types. These 

files were then downloaded and added to the collection of files. 

After we had collected enough data, we sorted the files into categories based off 

of what their file extension was listed as [27].  

We then selected files (of similar size) from each of our file types and visually 

examined it in both a digraph (2D) view and a 3D graph view. The results are listed in 

Appendix B – 2D and 3D Visualizations of Files. 

We then built a fragmentation program to split each file into a 512 byte fragment.  
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5.4 Fragmentation Program 

The first and last fragments of most file types can easily be identified and located 

by traditional carvers, and thus these fragments were not included in our tests. Our 

process was as follows (pseudocode): 

1. Select a file. 

2. The first 512 bytes of the file would be skipped. This would effectively skip the first 

fragment including the file signature’s header. 

3. Then the file would read 512 bytes into a byte stream buffer and output the resulting 

fragment. 

4. This process would continue until there were less than 512 bytes remaining. This would 

effectively skip the last fragment which would include the file signature’s footer. 

5. Then the next file in the folder would be selected for fragmentation. 

6. This process would continue until there were 100,000 fragments of each file type. 

7. Files of less than 512 bytes were discarded as these would be located in only one cluster 

and could be carved out by traditional sequential file structure carvers. 

 

After we had successfully fragmented 100,000 of each file type, we selected 

some random files from the batch to see if the general trends we noticed in visually 

examining the entire file (Appendix B) still existed in the fragments. Naturally, we 

assumed the fragments would not exhibit all the trends we noticed when we viewed the 

original file in its entirety, but we hypothesized that there would be some trends that 

remained. 
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For example in Figure 5.2 we can see that although there are fewer bytes of the 

text file to view visually, the bytes still tend to cluster together in two straight lines with 

a cluster of points in a square shape in the center.  

 

Figure 5.2 – A comparison between the visual representation of an entire .txt file (left) 

and a randomly selected .txt file fragment of only 512 bytes (right). 

 

Another example was with .wav files. When viewing the whole file visually, the 

trend seems to be that the points cluster around the center diagonal axis. When looking 

at a smaller fragment of just 512 bytes, the trend remains although is less predominate 

(see Figure 5.3). 
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Figure 5.3 – A comparison between the visual representation of an entire .wav file (left) 

and a randomly selected .wav file fragment of only 512 bytes (right). 

 

While these differences seem to be minor, we hypothesized that if we could 

properly capture these visual trends we would be able to not only automate the 

identification of the fragments but also be able to form generalizations about each file 

type. 

 

5.5 Graphical Binning Program 

In order to capture these small trends that occur with each of the file types, we 

needed to develop a method to capture the information contained in the graph that would 

be meaningful when being processed by a learning machine algorithm. Creating this 

translation would not only decrease the time it would take to analyze an entire file 

system of fragments but might be able to identify trends the human eye might overlook. 

As with all visualization processes, a human does still need to be involved in the 

training of the VMIFF tool. We needed a way to cluster the various points together into 
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small groupings in order to capture the overall “look” or trend of the file. We did this by 

utilizing a “grain and bucket” approach. Grains or granularity refers the how many 

sections or buckets the graph will be divided into. Each bucket will contain information 

about all the points located within that section. 

The granularity (grains) of the graph is calculated as 4n where n is a value 

between 0 and 8. Granularity determines the number of equal sized sections or buckets 

the graph has been divided into. For example if a graph had a granularity of 0 it would 

be displayed as one large graph with one bucket to hold all the points like graph on the 

far left in Figure 5.4. The middle graph in Figure 5.4 has a granularity of 1 and therefore 

is divided into 4 buckets as depicted by the light blue line. The points of each section are 

now represented in a set, which starts in the top left quadrant and reads left to right, top 

to bottom. The center graph’s points would be represented by the set: {3, 1, 0, 2}. The 

right graph has a granularity of 2. There are now 16 buckets which are represented by 

the set: {1,0,1,0,1,1,0,0,0,0,1,0,0,0,1,0}. 

 

 

Figure 5.4 – Granularity 0 (left), Granularity 1 (middle), Granularity 2 (right) 
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Points contain two types of information. The first type is location. Location is 

represented by the value of the two bytes used to generate that point. The second type is 

the sequence of that point. Sequence is determined by when the point was added to the 

graph as it was read from the byte stream. For example the first two bytes are read in and 

form a point with a sequence of 0, while the last two bytes of the stream will create a 

point with a sequence of 255. 

Graphically data can also be represented in dimensions. Dimensions refers to 

how many bytes are used to represent a point. If two dimensions are specified then two 

bytes would be used to form a point. If four dimensions were used, then four bytes 

would be used to represent a point. For the purposes of demonstrating the positive 

correlation between visualization and our graphing “grain and bucket” metric, we will be 

assuming only 2 dimensions will be used although VMIFF will currently accept up to 

16. This was done to avoid complicating our results too many variables. 

We now have a way to visually represent the graph by using buckets, capture 

groupings of points by changing the dimensions, and can expand and narrow our focus 

by modifying the granularity of the graph. Next we need to determine which features or 

algorithms to run against these graphs in order to capture the visual data into a format 

suited for our machine learning algorithms. We will need to do this process for each of 

the 13 file fragment types we selected. 
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5.6 Feature Selection Framework 

As with all visualization methods, some human involvement with the data is 

necessary to take advantage of what makes visualization a useful metric. Humans 

provide meaning and context to a situation which machines cannot (unless we give them 

this context). Feature selection is the context. By creating these features we are teaching 

the machines how to “visualize” as we do. Thus as more file fragment types are added, 

the feature creating process will need to be modified in order to visually capture these 

new types (if existing features fail too). 

Thus when we designed our feature selection framework, we created a dynamic 

module approach that makes it easy to program new features to run against our graphical 

binning program. It is our hope that for future work, we (and others) will be able to 

expand the number of features available and further develop the ways to capture the 

essence of a binary file visually. 

For the purpose of this paper we selected three features: total points, total 

sequence, and average sequence. The total points feature calculates the total number of 

points in each bucket. The total sequence adds the sequence value of all the points in the 

bucket. The average sequence points returns an average sequence value for all the points 

in the bucket. 

Now that we have developed a way to “measure” how a file fragment looks 

visually we need to transform this data into a format accepted by a learning machine. 
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5.7 Weka Software 

We selected the Weka data mining software to help classify our file fragments. 

Weka is a java application that contains a collection of machine learning algorithms to 

assist in data mining tasks [14]. The software was developed by the Machine Learning 

Project at the Department of Computer Science at the University of Waikato in New 

Zealand [14]. 

The first obstacle was to translate our generated metrics into the proper format 

for Weka. Weka takes in a textual comma delimited Attribute-Relation file format or 

.arff file. While these files can be typed manually we developed an automated process 

(Arff Generator) which generates these arff files in the proper format. Arff files use the 

“@” symbol to indicate the different sections of the file.  

For our project we used three sections: 

 @Relation- to give the name of the file 

 @Attribute - to list each of the features we were using 

 @Data - to list each of the files and its corresponding metrics 

A sample .arff file has been included in the Appendix A.  

When generating these arff files we built a small scripting program which would 

allow us to automate the arff file generations. Users would type the commands into a 

text file and then load the file into our arff generator. This program would then read in 

the commands from the text file and generate the arff file without any need for human 

interaction. 
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A command is a series of strings which are separated by “:”. For example: 

[AVI],[DOC EXE GIF JPG MOV PDF PPT TXT WAV WMA WMV ZIP]:AviVsAll:1000: 5:[TotalPointsFeature] 

There are five components of each command string. The first details which sets 

of fragments the user would like to include in the test set. In the above example we are 

comparing two groups. The first group will consist only of avi fragments and the second 

will be composed of an equal number of doc, exe, gif, jpg, mov, pdf, ppt, txt, wav, wma, 

wmv, and zip fragments. This section can contain any number of groups. 

The second command is the file name of the outputted arff file. The third 

command is the number of fragments we want for each of the groups. For the example 

above there will be 1,000 of each group, so 1,000 avi fragments and 1000 split into 12 

groups or 83 of each of the fragments in the second group. This will result in a total of 

1996 fragments. The next number tells what granularity we want to view the graph at. 

This value must be between 0 and 8. The final command tells the arff generator which 

features to run against each of the fragments. Multiple features can be combined (space 

delimited), however for the purposes of this paper we will be only looking at the 

effectiveness of each of the three features separately. 

After the arff files were generated, we used the GUI version of Weka and used 

the Explorer application to run against the data we had collected in our arff files. We 

used the “classification” component of Weka which allowed our data to be compiled 

using a known machine learning algorithm. Now that we have loaded our arff file into 

the Weka software, we needed to decide which algorithm to use to help classify the data.  
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5.8 Machine Learning Algorithm & Best Features 

We elected to use the J48 decision tree as our classifier as this is a well-known 

and documented classifier [9].  
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CHAPTER 6.  EVALUATION AND CASE STUDY 

 

After creating up our software, VMIFF, we wanted to evaluate our results on a 

test case. We selected 1,000 fragments of each of the 13 files types in order to build 13 

models to identify each of the 13 file types. These models have a specified granularity 

and feature which we determined to best fit that particular file type using predictive 10-

cross-fold validation. We then built a test set of 13,000 fragments to run against this 

model. The results will be detailed and examined in the section below. 

 

6.1 Selection of Best Features & Granularity 

The first step of building our models was to determine which granularity and 

features to use. We determined that an exhaustive comparison of all combinations of 

both granularity and features would be the most effective manner to determine the “best” 

fit model.  

When considering which feature and granularity we were going to use to build 

the model from we considered multiple variables. The first was to examine which 

combinations of granularity and features resulted in the highest true positive rate. The 

other variable was to consider the computational time for each grain. While our results 

were generated on multiple computers, we noticed that computational time as well as file 

size dramatically increases as the number of grains increase (Figure 6.1) 
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Figure 6.1 – Demonstration of file size growth based on granularity 

 

We would be using our three features: average sequence, total sequence and total 

points for our test case. For granularity we would be using grains 1 through 7. Grain 0 

was eliminated as it would return the same values for all fragments and grain 8 was 

eliminated as it would return the entire graph and be extremely computationally 

intensive. 

Our data set contained 13 models. Each model had the file type we were going to 

identify compared to an equal sized collection of all other 12 file types. We used a total 

of 1996 fragments in the training set: 1000 of these consisted of the file type we were 

trying to identify and 996 were composed of an even mixture of the 12 file types (83 

fragments of each of these types). 

The results of each model are detailed below listed alphabetically by file type. 

We include both a table and graph of the results and a brief summary of our findings. 
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6.1.1 Avi Vs. All 

 

 

 
Figure 6.2 – The true positive rate of avi fragments vs. other fragment file types 

 

The general trend of this data is that true positive rates slightly increase as the 

amount of grains increase. While it was determined experimentally Total Sequence – 

Grain 7 offered the highest results, we elected to use Total Sequence - Grain 6 for our 

avi model. We felt that a true positive rate increase of 1.1% was not enough to merit the 

increase in runtime between grain 6 and grain 7. 
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6.1.2 Doc Vs. All 

 

 

 
Figure 6.3 – The true positive rate of doc fragments vs. other fragment file types 

  

The general trend of this data is that true positive rate increases as the amount of 
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information they contain [10]. For instance a word doc with only text has an average 

byte value of just 90 while a word document containing images has a higher average 

byte value of 125 [10]. These factors can increase the difficulty in detection. We selected 

Total Points – Grain 7 for our doc model, as the true positive rate between grain 6 and 

grain 7 was 5.5%. 

 

 

6.1.3 Exe Vs. All 

 

 
Figure 6.4 – The true positive rate of exe fragments vs. other fragment file types 
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The general trend of this data is that for both total sequence and total points the 

true positive rates generally fall into a parabolic curve with the highest values being in 

grain 1 and grain 7. We selected Total Points – Grain 1 for our exe model as it was both 

the highest true positive rate and would result in the shortest amount of run time. 

 

 

6.1.4 Gif Vs. All 

 

 
Figure 6.5 – The true positive rate of gif fragments vs. other fragment file types 
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statistically the highest true positive rate, we selected the Total Sequence – Grain 1 for 

our gif model as grain 1 has a dramatically shortened run time. 

 

 

6.1.5 Jpg Vs. All 

 

 
Figure 6.6 – The true positive rate of jpg fragments vs. other fragment file types 
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Jpg file types are very organized file structure compared to other file structures. 

Jpg files are uniformly organized giving them an average byte value between 120 and 

142 [10]. This fact helps to aid in their identification as the only part that is not uniform 

is the very beginning of the jpg file (which is removed by our VMIFF tool when the 

header was removed) [10]. Where identification of this file type struggles, is that this file 

type is commonly found inside other file complex file types like doc (Microsoft Word), 

ppt (Powerpoint), or zip (compressed) files [21]. This can lead to misidentification. 

 

 

6.1.6 Mov Vs. All 

 

 
Figure 6.7 – The true positive rate of mov fragments vs. other fragment file types 
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The general trend of this data is that true positive rate increases as the amount of 

grains increase. We selected Total Points – Grain 7 for our mov model as it was both the 

highest true positive rate and we felt the 5% decrease in true positive rate was not 

enough to justify using grain 6. 

 

6.1.7 Pdf Vs. All 

 

 
Figure 6.8 – The true positive rate of pdf fragments vs. other fragment file types 
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documents, it can contain other objects within [1]. Thus capturing only a 512 byte 

section of a pdf, could very well be a portion of an embedded jpg and thus would be 

identified as being misclassified (as it failed  to classify as a pdf) when it actually was 

classified correctly [21]. We selected Total Points – Grain 3 for our pdf model as it was 

both the highest true positive rate and a lower runtime than the higher grains. 

 

6.1.8 Ppt Vs. All 

 

 
Figure 6.9 – The true positive rate of ppt fragments vs. other fragment file types 

 

The general trend of this data is that regardless of the feature used the true 

positive rate forms a plateau, although the higher grains do show a slight increase. Ppt 
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files are also complex file types, built like smaller file systems, in that they can contain 

other objects within in them [21]. We selected Total Points – Grain 7 for our ppt model. 

 

6.1.9 Txt Vs. All 

 

 
Figure 6.10 – The true positive rate of txt fragments vs. other fragment file types* 

Note*: The TP graph has been zoomed in. 

 

Overall the true positive rate for our txt detection was very high, so identifying 

noteworthy trend for this type was more difficult for this model. This is due to plain text 

being very basic in its structure. We noted that average sequence did the worst of the 

three features. We selected Total Points – Grain 4 for our txt model as the general trend 
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across the other models has been the higher the grain the better it will perform. Thus we 

selected grain 4 as it both performs well and will also take advantage of a faster runtime. 

 

6.1.10 Wav Vs. All 

 

 
Figure 6.11 – The true positive rate of wav fragments vs. other fragment file types 

 

The general trend of this data is that for all three features, the true positive rates 

generally fall into a parabolic curve, where the highest values fell in the middle grains. 

With the file types we have selected, with the exception of the zip file, wav files will not 

be embedded into another object amongst our 13 selected file types. The unique 

structure of the wav file (as shown in Figure 5.3 and Appendix B) aids VMIFF in 
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separating this file type from the others. We selected Total Points – Grain 4 for our wav 

model. 

 

6.1.11 Wma Vs. All 

 

 
Figure 6.12 – The true positive rate of wma fragments vs. other fragment file types 

 

The general trend of this data is that true positive rate increases as the amount of 

grains increase with a slight decrease near grain 5.  Again with the exception of zip files, 

wma files are not likely to be embedded in the other file types. This aids in VMIFF in 

separating our wma file fragments from the other groups. We selected Total Points – 

Grain 7 for our wma model. 
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6.1.12 Wmv Vs. All 

 

 
Figure 6.13 – The true positive rate of wmv fragments vs. other fragment file types 

 

The general trend of this data is that the true positive rate is higher among the 

first three grains and then decreases until grain 7. Finally wmv files too will not likely be 

found in the selected file types we have selected. Thus our true positive rates were 

increased. We selected Total Points – Grain 1 for our wmv model as this was both the 

highest true positive rate and had the fastest runtime. 
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6.1.13 Zip Vs. All 

 

 
Figure 6.14 – The true positive rate of zip fragments vs. other fragment file types 

 

The general trend of this data is that regardless of the feature used the true 

positive rate forms a plateau, although the higher grains do show a slight increase. Zip 

files too are composed like small file systems [21]. Zip files will contain other types of 

objects, like a jpg, inside of them [21]. This makes them a complex file type and will 

increase the difficulty of correctly identifying them. We selected Total Sequence – Grain 

7 for our zip model as it was the highest. 
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6.1.14 General Trends 

Overall, from the data we collected, we noted that Average Sequence feature 

performed the worst of all three, while Total Points and Total Sequence had similar 

results. We feel that Total Points performed well as this feature better captured overall 

clustering of bytes in the visualization. For example wav files tend to be clustered 

around the central axis of the 2D graph. Thus when represented by our metric these 

central values would be higher in quantity than those values around the outer edge of the 

scatterplot. Similarly the feature Total Sequence likely performed well as it captured the 

overall flow (sequence) of the data. 

 

6.2 Case Study – 13,000 File Fragments 

Now that we had successfully identified which features and granularity worked 

best to identify each file type, we built our J48 decision tree models utilizing these 

results. We then built a test case to run these models against. 

Our test case consisted of 13,000 file fragments, 1000 of each of the 13 file 

types. We then ran each of our models against these file fragments to determine their 

effectiveness at correctly identifying the file. Our results are below (Figure 6.15).  
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Figure 6.15 – The true positive and false positive rates of each file type 

 

 Our values were much like we hypothesized when building our training set. The 

highest false positive rates were amongst the file types which were considered to be 

complex in that they could contain other objects within them. This fact most likely 
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another of the 13 file types inside of it. We were most proud of our txt identification rate 

or 99.2%. Wav and Wma values were also rather high at 88.6% and 84.2% respectively 

with low false positive rates as well.  We suggest that this is due to the three features we 

selected (total sequence, total points and average sequence) best being able to capture 

these unique forms. Additionally these three types are likely not embedded into the other 

file fragments, which would have decreased their likelihoods of creating a false positive.  
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CHAPTER 7.  DISCUSSIONS 

 

Perhaps the largest criticism of our VMIFF tool is that the results of our models 

do not surpass all existing methods of file fragment identification. While this holds true, 

as our software stands now, we believe that by utilizing additional features and machine 

learning algorithms our results can still be improved upon. The modularity of our 

software as well as it being release in open-source format, will enable other developers 

and researchers to expand upon our existing methods to further enhance its usability.  

The purpose of this work was to demonstrate that capturing the essence of visual 

data is possible and can result in a positive correlation. Thus we did not focus our efforts 

on determining the best machine learning algorithm for our data nor on providing an 

exhaustive list of potential features to measure the visualization data by. Our focus was 

to provide a brief demonstration of our graphing method’s potential using only three 

features. We hope this concept will inspire others to see the value visualization of 

complex data can bring and to serve as a springboard for new features and new 

adaptations of machine learning algorithms. We hope to see our methods utilized in 

order to further enhance the validity and usability of visualization methods. 
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CHAPTER 8.  SUMMARY AND FUTURE WORKS 

 

8.1 Summary 

In summary, we have discussed how visualization programs can help 

investigators see complex information in an easy to understand format. Following this 

insight we developed a visualization program that can be used to visually analyze both 

complete files and fragments. Additionally this program will be released after April 8th, 

2013, and will be available as open-source software on github under the project name 

VMIFF [28].  

We then built a custom fragmentation program to divide up a given set of files 

into a specific type of fragment: whole file, header fragments, mid fragments, and footer 

fragments and also allowed for specification of those fragments size. We developed a 

graphing program which can be used to transform the visual data from the graphs into a 

metric which can be used in machine learning algorithms. We created a modular feature 

program which can allow for new features to be added without having to restructure the 

entire program. We demonstrated that VMIFF resulted in a positive correlation between 

the graphing program and the original visualization of the file fragment while using only 

three basic features and a 2 byte digraph. 

 

8.2 Future Works 

We feel that the modular aspect of VMIFF has given this tool a lot of potential. 

As future works we would like to see more features added to our program. A fully 
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developed GUI version and command line version would help to aid in the overall 

usability of our program. As we are releasing the program to the public as open-source, 

we would like to see other’s insights and feedback as to this projects potential.  

As to functionality, we would like to add a method to identify the order of 

fragments once their type has been identified. We feel that this is the next step in being 

able to provide a useful open-source tool to investigators. Additionally once the 

fragments have been identified and ordered we would like a validation tool to be created 

to further evaluate whether the file was correctly pieced back together. This would 

further reduce both the workload of the investigator and increase the automated process 

of recovering files. 
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APPENDIX A.  ARFF FILE FORMAT 
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APPENDIX B.  2D AND 3D VISUALIZATIONS OF FILES 
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